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A detailed examination of the cascade statistics and scaling exponents is carried out for a dynamical-system
model of fully developed turbulence called the GOY shell model. The convergence in time of the probability
density functions and moments of the velocity fluctuations and their scaling exponents is studied with particu-
lar care. With a large sample size X30°), we demonstrate that there exists a finite cutoff for the velocity
fluctuations at each inertial-range wave-number shell and the properties of the cutoff determine the scaling
exponents of all moments. This cutoff represents the most intermittent structures in the cascade dynamics and
exhibits a power-law dependence on wave number. The accurately determined scaling exponents permit a
detailed comparison with various phenomenological models describing the statistics of the energy cascade. The
consideration of the first and second derivatives of the scaling exponents with respect to the order of the
momentsp provides the evidence that the hierarchical-structure m@te and Leveque, Phys. Rev. L&,

336 (1994)] predicts the best functional dependencepoaf the scaling exponents in the GOY shell model.
[S1063-651%97)06403-9

PACS numbes): 47.27—i

I. INTRODUCTION the difficulty seems to lie in a poor knowledge about the
functional space in which a typical turbulent solution
Turbulence is generally described as a dynamical state afvolves. Anya priori estimate without taking into account
a system exhibiting chaotic fluctuations over a wide range osuch knowledge does not seem to yield any optimal charac-
spatial and temporal scales. A customary example is the mderization of the properties of turbulence. Physicists rather
tion of a fluid at high speed or low viscosity. Of particular investigate these properties from a phenomenological stand-
theoretical interest is fully developed turbulence at a statistipoint, that is, starting from hypotheses motivated by experi-
cally stationary state where turbulent fluctuations are susmental and numerical observations. Interestingly, this is also
tained at all scales, with different mechanisms at differenthe approach adopted by the mathematician Kolmogorov, ac-
scales. For an ordinary three-dimensional turbulent flowgcording to Yaglom. This line of study has yielded very fruit-
large-scale fluctuations/{~ /) are usually maintained by ful results during the past half century and continues to ex-
an external forcing, or a flow instability, while small-scale pand nowadays.
fluctuations ¢'</,) are sustained by a so-called cascade While recognizing that eventually the Navier-Stokes tur-
dynamics which results from the nonlinear interactiG@lso  bulence needs to be fully understood, it is worthwhile to
called the inertial forcebetween larger eddies. At small vis- examine carefully various other systems exhibiting the es-
cosity, the cascade dynamics dominate over the viscousential features of fully developed turbulent dynamics. These
damping over a wide range of scales until a characteristifeatures include, from the present phenomenological under-
dissipation scale is finally reached ¢ 7). For /<, fluc-  standing, the existence of an inertial range of scales where
tuations are then damped out by viscous dissipation, and theascade dynamics are fully developed. As one moves away
flow becomes smooth. When the characteristic forcing androm a deductive approach based on the first principle, such
dissipation scales are clearly separated, ¥g> 7, turbu-  studies are particularly important. Indeed, studies on various
lence then reaches a state of fully developed dynamics. Aurbulent systems allow one to differentiate the Navier-
concise and constructive theoretical understanding of this dyStokes(NS) system from others and identify the role of the
namical state has been stirring up a continuous effort for thessential ingredients in the NS system: e.g., the conservation
last half century. laws, the degree of the nonlinearity, etc. More importantly, it
It is widely accepted that the motion of an ordinary in- may stimulate the development of a general theoretical
compressible fluid is accurately described by the Navierframework for nonequilibrium systems presenting critical
Stokes equations for a wide range of viscosity, or Reynoldsind scale invariance properties. This has been the essential
number. The Navier-Stokes equations have so been regardetbtivation behind the present study of a dynamical-system
as the first principle for describing turbulence; the turbulentmodel of turbulence, namely the GOY shell model.
state is identified as the very chaotic solution of the equation. The GOY shell model is a finite-dimensional dynamical
At the present time, rigorous nonlinear analysis of the equasystem, first introduced by Gledzg8] and based on earlier
tion has yielded few constructive resulis2]. The nature of  attempts to quantitatively characterize the cascade dynamics
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[4,5]. Later, an important extension was made by OhkitaniThis result suggests that the conservation properties of the
and Yamadd6] by introducing phase dynamics with com- nonlinear dynamics play an essential role in determining the
plex variables. The dynamics are governed by the followingnertial-range scalings.

set of ordinary differential equations:

Il. MAIN RESULTS

In the present work, we report more careful quantitative
studies of the inertial-range statistics. Such a study is neces-
+epUn_1Un_o). sary in view of testing various theoretical models of the
inertial-range describing the energy cascade. Two main prob-
Here, {Up}o1,... n—1 IS @ set of complex variables which |ems have affected the quantitative significance of the previ-
model the Fourier space excitations in shells of wave numpys studies. The first problem is related to oscillations of the
bersk,=koh"<k<kn, 1, f, is a driving force usually acting moments(|u,|°) across the wave-number shél{. These
on some low-wave-number shells, e.th=f,6,,+f36,3.  oscillations seem to be due to the discrete nature of the
The termvkZ(K,/kq) U, is a hyperviscosity damping char- model. This issue has been discussed by Kadaetadf. [7],
acterized by an exponeiat, the kinematic viscosity, and  who then focus on the quantity
the characteristic dissipation wave numhkgrdetermined by
the amplitude ofv. At very smallv, the dynamics are essen- IT,=(Up_1UpUps ) Y2
tially inviscid for k<<ky; the nonlinear couplings make a
chain linking the low- and high-wave-number shell fluctua-  The study of the scaling properties of the moments
tions. » _ (|I1,|Py shows that the effect of a major oscillation of period
The coefficients of the nonlinear term follow from the hree is reduced and the same scaling lawg|aglP) are
requirement that the total kinetic ener@~= 3 >|u,|> and  observed. In fact, these oscillations have a more complicated
the phase volume of this system must be conserved by th&tructure originating from the rapid falloff of the excitations

dt

d
2
-+ vkn(kn/kd)“> U,=fo+(aaui ur, ,+bour, jur

inviscid dynamics: at the ultraviolet dissipation cutoi;. A more accurate de-
_ _ _ termination of the scalings is adopted here and consists in
an=ik,, bp=—iek,_1, c=—i(1-e)ky_3. studying the relative scalings(|II,|P)~(|II,|®)%/%s, a

method first used by Benzt al. [12] in measuring scaling

Here, both\ (the subsequent scale ratiand € are free pa- exponents in laboratory flows.
rameters. The nonlinear dynamics also conserves a second The second issue concerns the sample-size effect on the
dynamical  quantity H=ZXE,/(e-1)" [7]. For statistical averages. The convergence has never been studied
A=1/(1-€), H=2E,/(e—1)"=2(—-\)"E, and can be pefore, although high-order moments have been frequently
identified with the helicity (1, is an unsigned quantity and reported. Note that there exists the same issue for measure-
|Hnl~knEp). In the present studyn(e) = (2,3), which lies  ments of the scaling exponents in both laboratory experi-
on the energy-helicity conservation curve. ments and numerical simulations. By working with a large

The GOY shell model has received much interest in thesample size(up to 5 billior), we are able to examine the
last few years. Existing results report that after a transitoryssue of convergence for moments up to order 20. This al-
regime, the system displays very rich chaotic dynamicsjows us to meaningfully discuss the scaling expongptsf
which defines a specific attractPd,8]. The stationary(in-  pth-order moments for largp and its derivatives which, as
varian) measure on this attractor is not known rigorously,shown later, provides a crucial test for various theoretical
however, many of its properties can be studied numericallymodels. The calculation of moments are performed by first
A particular component of this measure, which is of funda-constructing the probability density functiotBDF’s), fol-
mental physical interest, is themooth probability density  jowed by an integration in the variable of the fluctuating
functions of single-shell variablefsi,|. At small viscosity, quantities(e.qg., logo|Il,|). The exponents are then obtained
the system exhibits an inertial range of shlis<k,<ky, by an estimation of the local derivative:
where such PDF's fully determine the scaling properties ofgp/§3: — dlog(|IT,P)/dlog(|TL,|%). Several schemas are used
lun| through a power-law dependence of the statistical mofor such an estimation in order to ensure the robustness of
ments (|u,|P) on the wave numbek,, characterized by the result. This detailed examination points out the source of

some scaling exponents : uncertainties, leads to some convergence curves, which al-
. lows one to extract the values of the exponents, and finally
(lug|Py~k, . gives an idea about the confidence levels of the results.

With an accurate determination of the scaling exponent
It is found that the{,’s increasingly deviate from Kolmo- ¢{,, we are able to study its functional dependencepoin
gorov's mean field theory,=p/3 [9] asp increases, which particular, with the study ofi,/dp and dzgp/d p?, we are
can be interpreted in terms of some multifractal scaling propable to evaluate various scaling models of turbulence pro-
erties of the fluctuations of the velocity amplituda,| posed in the past three decades: the log-normal mdd3|
[10,7]. The deviation from Kolmogorov's scalings dependsthe randomB model[14], p model[15], the log-stable model
upon the structure of the nonlinear term, i.e., on the particuf16], and the hierarchical-structure moddl7]. This fine
lar setting §,€) [11]. However, onceX,€) is fixed such that comparison shows that the hierarchical-structure model pre-
the energy and the “helicity” are conserved, the scaling ex-dicts a functional form forf, remarkably close to the mea-
ponents are found independent of the parametemsde [7].  sured one. Other models, with optimally chosen parameters,
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produce close values faf, at low order, but display an to the discrete shell grids. We have observed oscillations of
inconsistent tendency fod{,/dp and dzgpldp2 asp in-  the global quantities such as the mean dissipation rate as a
creases. function of the viscosity which we believe is due to a peri-
With a large sample size, up to 5 billion, we demonstrateodic change of the relative location &f as the viscosity
the existence of a finite cutoff for the velocity fluctuations atdecreases. This phenomenon suggests the importance of the
each wave-number shell. In other words, the attractor has dynamics at the viscous cutoff on the whole inertial range,
compact support. The highest fluctuation events in theconsistent with the results in the hyperviscosity case
inertial-range shells, which will be referred to as the most(a>0) [18]. Although we have studied various cases with
intermittent structures in the cascade dynamics, show &l=17, 22, 27, and 35, the results presented below will focus
power-law dependence on the wave numbéy,: on the casdN=22 andv=10"'. We will refer it to as the

ITT|max~ k. The power-law exponen.. is significantly ~ standard parameter case.

smaller than the exponents, of typical fluctuation events ~_ 1he system has been integrated forward in time using
<|Hn|>~k_x° a direct evidence of multiple scaling nature either a second-order slave-frog Adams-Bashforth scheme
n 1

of the cascade dynamics. The existence of the most intermiE—lo] or a fourth-order Runge-Kutta scheme. The PDF's ob-
y . . ; ained using these two different schemas agree accurately. In
tent structures provides then a solid basis for the

. . . X .~ “our present numerical investigation, we have actually chosen
hierarchical-structure model of the inertial-range scalingg; slave-frog Adams-Bashforth scheme, which is more ap-
[17]. ’

The reminder of the paper is organized as follows. In Secpropriate to resolve the dissipative dynamics. For the stan-

. . “dard parameters above, we havedet 2.5x 10 4. The ini-
lll, we present relevant computational details of the numeri-

. _tial condition is random and arbitrary. The system first ran
Eilmset:lrjiggl ?’L;ZTtSG;YthSQeI:OrESSiiIt. lgeiiﬁ. Ixj’n\é\;?ogszi“t?;for approximately 1000—5000 forcing shell turnover times in
Co ne p ity y order to ensure that the system has evolved close to its at-
inertial-range fluctuating quantities, and the convergenc

study of the moments, specially at high orders. Section V ij;\ctor. Due to the complicated structure of the attractor,

devoted to the study of the scaling exponents, with a deta|here Is no absolute criterion to certify tha'F the stgtion_ary

assessment of uncertainties and source of errc')rs In Sec gime has truly been reached after a finite Integration time.
. : . We must rely on the convergence of the statistical moments

the measured scaling exponents are compared to Varoys | alidate our description of the chaotic attractor

models of the inertial-range energy cascade. This compari- After the transitory regime, the system reaches.a dynami-

son is made more convincing by carrying out a consisten(t:a '

estimate of the first and second derivatives of the scalin | state in which the characteristic dissipation and forcing
Qhells are clearly separated, leaving an inertial range of shells

D D o ok 12,5 here an enery cascade fowards gh-vave-numer sl
pny 9 gperates at a constant mean rate. For the standard parameter
structure model which, as shown by the results of the abov

) L ase, the inertial range spreads up to the shell index
study, stands as the closest phenomenological description BT 1415 which corresponds to about 10 octaves or 3 de-
the energy cascade in the GOY shell model. ' P

cades. The study of the statistical properties of the fluctua-
tions of the velocity amplitudéu,| in this inertial range is
L. NUMERICAL INTEGRATIONS the main subject of the present work.

The parameters in the numerical integration of the GOY
shell model are chosen as follows: The reference wave num-
ber ko=2"3. Several forcing schemas have been used to The histograms of log|II,| have been constructed from
investigate the possible dependence of the inertial-range statatistical samples collected at each time step along the time
tistics on the forcing mechanism. These schemas indllide evolution ofII,(t). The discretization size of the histograms
a time-independent forcing acting on a single wave-numbehas been fixed aklog, o|IT,|=0.02 for alln, which realizes
shell (n=3); (2) a dt-correlated white noise forcing acting a compromise between the requirement to suitably approxi-
on a single wave-number shelh€3); (3) a St-correlated mate a continuous PDF and to get sufficient regularity
white-noise forcing acting on two adjacent wave-number(smoothnessin this approximation. With a logarithmic co-
shells 1=2,3); (4) a random force with a fixed correlation ordinate, one is able to capture the whole structure of the
time 6t=2.5x10"* and an amplitudéf,|=0.005,2 acting fluctuations ofII, for both low and high amplitudes. We
on the shellsn=2,3. The dynamics of the system are there-have independently verified the ergodic property of the GOY
fore deterministic in cas€l) and stochastic in the other shell model by confronting time statistics with mixed
cases. However, in all cases, the PDF’s at the inertial-rangensemble-time statistics. We then found that the ergodicity
scales display the same qualitative and quantitative featureg/as remarkably verified. This ensures that the renormalized
although some discrepancy was expected due to the discretéstograms converge to the PDFP§log, o|11,|), as the num-
nature of the shell model. The results presented below haveer of time samplegproportional to the integration time
been obtained using the forcing mechaniéth described increases to infinity.
above. In Fig. 1, we show the PDF’s of Iqg|11,| for two inertial

We have also investigated the dependence of the inertiahnge shellsm=7 andn=9 obtained with various sample
range statistics on the value of the viscosity. We did notsize. As seen from Fig. 12(log,¢|I1,|) shows a noticeable
notice any visible change provided that the viscous cutofasymmetry for the left and right tails with a slower decay at
kg remains located at the same relative position with respedhe negative values, i.e., fofl,| close to zero. This asym-

IV. PDF's AND MOMENTS
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FIG. 1. P(logyo|I1,]), n=7,9 for increasing sample size. Dotted FIG. 2. The magnified tail oP(log,o|I1,|) for n=9.

line, 1¢; long-dashed line, 2 10°; solid line, 5 10°. Note the

convergence of the sharp cutoff at the right tail. that the second derivative of the PDF’s can be considered not

metry allows us to discover an important property: there ex{0 change dramatically between nearby bins ¢fliy. The
ists a maximum for the fluctuation eventsldf,. Indeed, the technique then smoothes out bumpy fluctuations of the
right tail displays a sharp cutoff at a probability density level PDF’s due to statistical sampling errors. Specifically, we as-
much higher(two orders of magnitude at leaghan the den- sume that five consecutive points would lie nearly on a
sity level of the cutoff at the left tail which is likely set by second-order parabola whose parameters are then given by a
undersampling effects. Far=7, this maximum value has least-squares calculation, which yields
fully converged for the sample sizes above 1 billon. The
convergence appears more slowly for9; this is natural _
since stronger and rarer fluctuation events are expected at Yo=Yo~ 35(Y-2=4Y-116Yo—4y1+Y>).
higher wave-number shells. Note also that the left tail seems

noisier than the right tail, indicating that the high- . . :
f':mtp))ﬁtudoese(\a/ertltsa olf[tn Zre%(t)réacbhe?;rif cgngpitretdeto Iogw— The_moments are obtained by using the S|mp59n’s r_ule for
amplitude events. the _mtegratlon schema over the smoothed PDF's. Thls_ way,

Despite the huge amount of samples collected, the righ{’® increase the accuracy of our quadrature formula in the
tail at high-wave-number shells still exhibits fluctuations Numerical integration of the moments, especially for high-
near the maximum cutoff. This is a consequence of the inorder moments.
creasing intermittency at small scales. In Fig. 2, we show a Figure 3 shows the relative fluctuation of the moments as
magpnification of the large amplitude tail {(log, o|I1,|) for a function of the sample size, which is a direct measure of
two different sample sizes. In Fig. 2, we also indicate the
position of the amplitudes where the integrand in the integral - e
of the pth order moment has its peak. When the peak posi- 0.15 7
tion is close to the “false” cutoff, e.g., one obtained for a 1 TN + P
billon sample size in Fig. 2, we then expect that the evalua- N - 10
tion of the high-order moments to be inaccurate. Later results .
will show that this estimate is roughly correct. On the other 01 L w o p =15 |
hand, if the cutoff is definite, the moment calculation to any
arbitrary order should be accurate. Even if the cutoff is not
accurately determined, its existence implies a much faster
convergence of the high-order moments. Results below will
further justify this statement. ' :

In order to obtain a better estimate of the moments, we LS s
work with smoothed PDF’s. The smoothing does not make L — AN
any difference for a big sample size-(0°), but makes the - e el 1
convergence faster when the sample size is moderate. This 0% . . e D2
result is suggestive for the treatment of laboratory data which T e e e
is usually not very large. The smoothing is based on the No. of samples collected
assumption that the resolutiaklog, o|I1,| is small enough
SO FIG. 3. Convergence dfIl,|P), p=5,10,15.

Slog, ({IT1,1P))




55 CASCADE STRUCTURES AND SCALING EXPONENTS IN ... 2793

~ 2 log,,7/T,

log,(1—(F,(t+7)F (t))/ (FZ ))

I L | L | L L L L L L L I
-3 -2 -1 0
log,o(T)

FIG. 5. Correlation time as a dynamical time unity, as function
of logyk, /kg=n.
FIG. 4. Two-point time correlation functions of the energy flux. ..o statistical events to converge to its asymptotic shape.
This naturally slows down the convergence of high-order

the convergence. The fluctuations of the moments here are Jments at high wave numbers.

relative to the asymptotic value obtained with & 50°
sample size. This representation enables a synthetic view of
the convergence of the moments at different orders. The V. SCALING EXPONENTS

second-order moments have practically fully converged for  The above results establish that the moments only fluctu-
sample sizes above 10At the sample size 4 10°, all Mo~ ate within 1% up to the order of 1ind just a few percent
ments up to the order 15 are within a 1% margin. Keeping,p to the order of 20for a sample size from % 10° to
these results in mind will be useful in judging the source ofg v 1°. If the moments behave exactly in power law with

the uncertainty in the determination of the scaling exponentsye wave numbek, , the exponents can then be derived from
For practical purposes, it is important to formulate theihe |0cal derivative:

convergence results in terms of the length of the time signal
in a dynamical time unity, which is more related to the num- dlog(|I1,|P)
ber of independent samples. The natural dynamical time p:_W
scale at a particular wave-number shell corresponds to the n

local turnover time or correlation time, which can be esti-The existence of a scaling range is then manifested by the
mated from the two-point time correlation functions. In Fig. constancy of the local derivative over a finite range of wave

4, we present the two-point correlation functions n,mpers’ Our estimation of the scaling exponents below will

(Fa(t)Fn(t+ 7)) of the energy flux at different inertial-range e hased on the evaluation of the local derivative and on its
shells. For smallr, (Fy(t)Fq(t+7))=(Fa(t))(1=7%/73).  constancy property.

We then definer, as the time unit which plays a similar role

as the Taylor microscale in Navier-Stokes turbulence. Figure 0.04
5 shows the variation of,, as the wave numbeék, . In the

log-log plot, it shows that the variation over the inertial-

range wave-number shells exhibits closely a power-law be- 0.03
havior.

Using 7, as a measure of the time unity, we have exam-
ined the convergence of the moments at various wave-
number shells. A typical result is shown in Fig. 6, where the
relative convergence of the 10th-order moment is examined.
It can be seen that the present time signal used in order to
construct these statistics is very long in terms of the dynami-
cal correlation time unity; of the order of 4@o 1C. It ap- 0
pears that the moments at high-wave-number shells converge
more slowly, even though they have a bigger effective
sample size due to a smaller dynamical turnover time. This =001 it L
can be explained by the fact that dynamics are more inter- log, T/,
mittent at higher-wave-number shells; high amplitude events
are captured in a more irregular and disordered way. The FIG. 6. Convergence of{I1,|'%, n=6,8,10 in dynamical cor-
high amplitude tail is then more bumpy and requires a lotrelation time unit.

T T T T T T T

n
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FIG. 7. Relative dependence of the moments showing clear rela: ° 0 ®
. 1V Wi -
P g (a) log,(K,/K,)

tive scalings.

In the shell model, however, we have a discrete set of
k, so that the derivative cannot be accurately evaluated by a
low order finite difference approximation. More seriously,
log, o |T1,,|P) exhibits oscillatory behavior with respect to the
shell indexn, even when the product of three adjacent shells
(I1,) is considered. Such an oscillation jeopardizes consid-
erably the locale derivative calculation. In order to make a
reasonable estimate, we choose to consider the so-called
relative scaling exponents, that is,

. diog(|11, " %
>3 logl [T, %)

5 10 15
(b) log,(k,/ k)

The relative scaling exponents are much less sensitive to
“global” oscillations through wave-number shells, and give  FIG. 8. (a) Local derivative estimated for the second-order mo-
a better characterization of the change of shape of the PDFigents.(b) Local derivative estimated for the tenth-order moments.
with n. Measuring the relative scaling exponents was first
suggested by Benazt al.[12] who refer it to as an extended different approximations for evaluating the local derivatives,
self-similarity (ESS property of the statistical moments. In- in order to ensure the robustness of the results. The best two
deed, they showed that, when plotting Jgdév ,|P) against methods are a least-squares fit by a straight line using four
logo{| 6v /|3) for the experimental data of the velocity struc- adjacent points and a fourth-order difference schema using
ture functions, a more extended range of the inertial-rangéive adjacent points. The results are shown in Fig) &nd
scaling is observed. This property can be interpreted as foFig. 8b). We may see the existence of a ran@g®@m the
lows: As the viscous range is approached, a variation ofvave-number shells 5—14vhere the local derivatives are
some global parameters in the PDF’s is introduced, whichroughly constant, although ocsillations are still persistent.
does not affect the characteristic deformation of the PDF'fRemarkably, the local derivatives oscillate around values
due to the nonlinear cascade dynamics, so that a longelearly distinct from the Kolmogorov scalind®] for both
power-law range is obtained for the relative moments. In thgp=2 and p=10. The two approximation schemas show
shell model, the oscillations due to the discreteness are algpualitatively the same and quantitatively close behavior of
related to the variation in shells of some global parameters ithe local derivative. We then regard these local derivatives as
the PDF'’s, relatively distinct from the deformation due to thethe local scaling exponents.
nonlinear cascade dynamics, so that we expect to see better At this point, it is important to check the convergence of
relative scaling behavior. Note that becadse=1 theoreti- the local scaling exponent estimate as a function of the
cally, the relative scaling exponents defined above in thesample size, since errors of several percents occur for mo-
inertial range are equal to the absolute scaling exponents. ments of order larger than 10. In Fig. 9, we display the ratio
In Fig. 7, we display the relative dependence([di ,|P) of the local scaling exponents estimate at several sample
on (|I1,|3) for p=2,10 over wave-number shells. In the log- sizes to the final derivative values obtained at the sample size
log plot, a clear scaling range is displayed. The lines have thef 5x 10°. The result shows that from 3 to 5 billion sample
slope which we obtained from a “mean” estimate of the sizes, the local scaling exponents differ by only 0.5%, much
local derivatives, as we explain now. We have used severalmaller than the scattering due to the oscillations across
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FIG. 11. The “mean” estimate of the anomalous scaling expo-
oos Lo v 1 L] nents.
5 10 15
log,(k,/k,) hard to go above fdynamical turnover time. Therefore, the
result presented here represents the best estimate to attain.
FIG. 9. Convergence check of the local derivative estimate. The scaling exponents, obtained from the average over

the wave-number shells from 5 to 14 is plotted in Fig. 11.
wave-number shells. It is also interesting to note that th T_he present st.udy allows one to a clear |dent|f|c_at|on of two
inds of errors:(1) errors due to discrete dynamics, af®l

convergence is faster for the local scaling exponents than f ; - L .
the moments which, according to Fig. 3, differ by 1% at g€rrors due to insufficient statistics. The second kind of error
! ) js made very small due to the large sample size, while the

billion sample size. This can be interpreted by the fact thai’rst kind intrinsic to the model remains the principle source
adjacent wave-number shells have some common deficien f uncertainty. The final error is obtained bp estilronatin the
in the estimation of the moments which, when the local de- Y- y 9

rivative is evaluated, partially cancel as a systematic errorscattenng due to the oscillations in Fig. 8. Since oscillations

yielding a more accurate estimate of the scaling exponentére primarily caused by the discreteness of the model, it

We believe that this is the reason why even with very inSUf_zteaetirgtSicgrpsoasrﬁlbllees tocllrggrrlovih%urere}ztrm;i:iega?;/eig \(’:V(')tgsrenr(\)/z
ficient sample size, experimental data still give a rEzliabletive Note thatI\D/vith. more r)(/a'alistic dynamics free of discrete
indication of the anomalous scalings in turbulence. X y

A more qusniive csmate o h comirgence rte oS30 5% 2 1 e 20 NaverSukes wbierce
{p is shown in Fig. 10. For a dynamical turnover time of y q

5% 10F and 2< 10/, ¢ does not show any fluctuations, resolutions, the exponents should be determined with higher

) . accuracy.
0, 0 -
e oo oreovr o 1, Neverelss, anomlous scaling exponents are clarly
gen . . y . e}/idenced beyond any doubt. In Fig. 11, we present the ex-
useful in accessing the possible convergence of experimentgd : ; L
onents{, with the error estimate from the oscillations. The

measurements. In a typical experimental data collection, it 'TEi)ne in Fig. 11 is a fit of the hierarchical-structure model

which has been recently proposed by us. In Table I, we re-
. T ; port also the numerical values of the exponents. The mean
values of the shell-model scalings are all within 0.5% close

«p=10 ' , to the values of the theoretical model. The agreement be-
o1 .p=15 ) tween the theoretical, and the numerically measureg is
' | truly remarkable. Note that the parameters in the
eP=5 1 hierarchical-structure model can be directly obtained from

the {, measured; the fitting is then straightforwaske the
- next sectioi The success of the hierarchical-structure model
LT is more apparent by a detailed comparison with other pro-
K posed energy cascade models in the next section. Such a
. remarkable agreement should not be accidental. We will dis-
lre-—--=—= " cuss its physical significance in Sec. VII.

L L

r ] VI. COMPARISON TO THEORETICAL MODELS

0995 -l L The purpose of performing such a detailed study of the
/7, scaling exponents is to test various models of the energy

cascade of fully developed turbulence. As discussed in the

FIG. 10. Convergence df, in dynamical correlation time unit.  Introduction, all phenomenological models of the energy
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TABLE I. Comparison of the scaling exponerits measured in 6 — . N R
numerical simulations of the GOY shell model with the
hierarchical-structure mod€17] in which the parameters are suit-
ably chosen.

L <
1 10°
SL model: 4 — 2100 |
Orderp {p/{s (shell model  0.125+1.49(1-0.58"7) 21
1 0.375-0.005 0.372 i """""""""" ) ]
2 0.705-0.003 0.703 o |
3 1.000 1.000 .
4 1.268+0.006 1.268 random @ %20.2
5 1.512+0.014 1.513
6 1.738+0.026 1.737 Log—Normal: j=0.24 1
7 1.946+0.040 1.946 ]
8 2.141-0.058 2.140 0 e
9 2.323t0.078 2.323 0 5 10 15 20 25
10 2.50:0.10 2.50 P
11 2.66-0.13 2.66 FIG. 12. Scaling exponents, compared to various models.
12 2.82+0.15 2.82
13 2.970.18 2.97
14 3.12+0.21 3.12 including moments of fractional orders. The question that
15 3.26:0.25 3.27 may arise is that since each exponent is obtained with a
16 3.40:0.28 341 certain level of accuracyi.e., finite number of significant
17 3.54+0.32 3.55 figureg, does it make sense to perform a finite difference
18 3.67-0.36 3.68 calculation? We believe that it is possible provided that a
19 3.80-0.40 3.82 local exponent estimated at some fixed point is consistently
20 3.94-0.44 3.95 used in the evaluation. The argument is that for an infinitesi-

mal change of the ordgr, most errors are common to dif-
ferent orders so that they finally cancel. The relative error of

cascade make no direct link to the Navier-Stokes equationd!€ derivative is of the same order as the exponent itself. We
therefore, they should also apply to the GOY shell modelnave decided to studyZ,/dp andd“{,/dp” from the local
Despite the discreteness, the shell model presents remarkat§igPonent{,, obtained at a fixed wave-number sheii<7)
cascade dynamics, and exhibits anomalous scaling lawa"d indeed we obtained a smooth curve for the both deriva-
which merit a quantitative theoretical description predictingt'Ves- The first derivative is obtained with a fourth-order in-
a correct form ofZ,,. In this section, we make a detailed terpolation formula:
comparison with some existing models. _ _
The models confronted in this comparison inclddethe £ (xg)~ 2f(X_2) = f(x_1) + (X)) +2f(x2) |
log-normal model[13] £,=p/3+ (u/18)(3p—p?); (2) the 10h
: — —_ —_ + p/3_l . . . i i
:)arr].:g(;neﬁg]).d?[idg/é_p E’Ss)'fgz((;,;; /();%_2)).' (%) :Eg whereh is the equidistant interval betweep andx,, ., and
log-stable mbdgl'g :p/g_i_l_logz[)\p/g_‘_(z_)\)p}g] [16] the second derivative with the following interpolation for-
Lo :

(5) the She-Leveque modek,= yp+(1—37)(1— BPR)/ mula:

(1-p) [17]. In Fig. 12, we comparé, with all the models 1

above with parameters chosen in such a way as to minimize f”(x,)~ W{M(x,g)+6f(x,2)—5f(x,1)—20f(x0)

deviation to the numericaf, at smallp (for the log-stable

model, we use the parameter values suggested by[K&la —5f(x1) +6f(x) +9f(x3)},

We also plot the exponents of the present numerical compu-

tation with increasing sample size to give an idea about th&@he results are presented in Fig. 13 and Fig. 14, at several

numerical convergence of the scaling exponents. It can bsample sizes. It is no surprise that the convergence is slower

seen that theg model and She-Leveque model give a satis-for derivatives, but the tendency of the curve is quite clear.

factory description over most of the rangepfAlthough the It is quite remarkable that qu|d2§p/d p?| derived from

other three models give the exponents values close to thiae numerical computation data tends to a straight line as the

numerical ones over some rangemfa sharp glance at the sample size increases, as predicted by the hierarchical-

figure indicates some inconsistency for laggeln order to  structure model. No other model predicts this tendency. It is

allow a more accurate differentiation among the models, wénteresting to note that from Fig. 14, we can derive the values

propose to studg{,/dp anddzgp/d p?, which gives a much of the two parameters in the hierarchical-structure mogel,

better characterization of the variation &f on p. and y, which are related to the slope of the line and its
The evaluation of the numerica{,/dp and d2§p/d p?  intercept with the vertical axis. This property makes the de-

have to rely again on some finite difference approximationtermination of the parameters very straightforward. As

From the PDF'’s, we can compute moments of all ordershown by Dubrulld19] and She and Waymirg0], the ex-
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0.5 PO ' : '
[ i -0.5 .
L SL model: £=0.58, y=0.125 i L ]
0.4 ; L —a—a . .
L p—model: p=0.545 ] r 1
- - 0.6 - —
0.3 N - F E
S i ‘\_\*.\\Longormal: pu= 0.24 i g L 4
N ] = . .
g L ] E L i
0.2 N 0.7 - -
r B 2 L i
: s ——: A .
[ B 8105 7 "~ ---- ] L
0.1k 7 5\19\/ f -
[ rendom—f x=0% ‘\-\./\.\ 1 -08 + n=06 .
i . ~. b L 78 i
| Log-stable: u=0.2, &a=1.65 ~~—_ ~_ | L = 0= J
ol i e T L e N=10 i
0 5 10 15 20 25 | i
P 0.9 : P A P R
0 109 2x10° 3x10° 4x10° 5x109
FIG. 13. First derivative of scaling exponewuts, /d p compared No.of samples collected

to various models.

FIG. 15. Convergence of IQg(|TT,|) max for n=6,8,10.
istence of a hierarchy of structures can be exactly realized by ] .
a random multiplicative process with log-Poisson statisticsNumber shell represents the largest, or the most intermittent,
The present numerical evidence then suggests the lodluctuation event. Intuitively, these structures should play a
Poisson process as the closest description of the cascade dgle in controlling the dynamics. We are then motivated to
namics of the GOY shell model. While a mathematical proofl00k for direct evidence of the existence of such most inter-
is still lacking, the physical significance of this result is Mittent structures. In Fig. 15, we display the relative varia-
worth being explored. We address this issue in the next sedion of 10g;o|I1y| max for a series of shells in the inertial range

tion. (n=6,8,10). Clearly, the maximum amplitude events for
n=6,8 have converged in each shell after 2 billion samples

VII. DISCUSSIONS: THE HIERARCHICAL STRUCTURES Eave beeZ Cogecf.ﬁ’ whereals forAlol SOME Increase Occu]fsh
OF THE ENERGY CASCADE etween 4 and 5 billon samples. A slower convergence of the

amplitude of the maximum events at larger wave-number
The basic phenomenology in the hierarchical-structureshells is consistent with an intermittent cascade.

model[17] is that the cascade events do not fluctuate up to One remarkable property of the most intermittent cascade
any arbitrary amplitude, but up to some maximum value. Inevent is its dependence on the wave number. In Fig. 16, we
other words, the trajectories of the asymptotic long-time dyshow the relative dependence of the maximum fluctuation
namics of the system evolves in a bounded domain in thevent on the third-order moments, from which we derive an
phase space, and therefore the PDF of the fluctuatimigs, approximate scaling exponent0.16. In the hierarchical-
IT,) at each wave-number shell has a compact support. Thetructure mode([17], this exponent corresponds to the pa-
upper bound in the velocity fluctuations at each wave+tameter \,,. Here, it is smaller than the parameter

N.=—0.125 used in the fitting of the scaling exponents

0 — T — :
| Log—stable: 4=0.2, a=1.65 i ' ' b
random—f: x=0. r ,L/*
- /I// 4
VVVVVVVVVVVVVVV _06 — /i/ ]
= _2 | ~ k;me/¥ ]
3 . L X 1
~ g 2
& = L A 4
s = Ea
2 S 08 e -
=0l 0 s
E | E |
-4 p-model: p=0.545 ~J Pid
L i L T |
L : i
L SL model, §=0.58, y=0.125 4
_I 4
_g L Ll CL T PRI B
0 5 10 15 20 I . L L P
p -6 -5 —4 -3

log,o((IMT,[2))
FIG. 14. Second derivative of scaling exponetts, /dp* com-
pared to various models. FIG. 16. Scaling behavior of lag(|IT,|) max-
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(Figs. 11-1% this may be due to the fact that the maximum - T I
values at higher wave number shells have not fully con- r
verged. Indeed, an increase in their values would make the 08

line flatter in Fig. 16. i ,,f""‘
The fact that the maximum fluctuation event displays a | o

scaling different from that for the typical fluctuation events I N
((logyo|ITL|)~k,, °% shows that the cascade dynamics in '
the shell model have multiscaling properties. The question
we had raised previously, and which actually leads to the
proposal of the hierarchical-structure model, is whether there
is any relation between the exponents of the most intense L n=7_
events and the typical intensity events. The key idea in the -
hierarchical-structure model is that both events, and in fact SR 1
all events in between, should be related because of the dy- R .
namical constraint expressed through the equation of motion. r T
In addition, a certain kind of similarity law should underly e e

) ' - 0 0.2 0.4 0.6
such a relation. This motivates the proposal that log,, II,[®/|IT_|1)

slope B3, =0.58

llog,, [T, [0

H
N
T

+1)_ U3 (o)1 — gl/3 ; ; ;
ng )—Apl'[gp)ﬁ 31'[% 1-8 ’ FIG. 17. Evidence of the scaling hierarchy.

where TP = (|I1,|P*1)/(|I1,|P) stands for thepth order
fluctuation events and;, is a constant independent of the

shell indexn. . _ In summary, the numerical results presented in this paper
_ For the PDF's we consider herfll | monotonically  ynambiguously demonstrate the existence of anomalous
increases witfp and therefore represents a hierarchy of am-on-Kolmogoroy scaling exponents characterizing the cas-
plitude levels of the velocity fluctuations. The above relationsgqe dynamics of the shell model; in particular, the scaling
means that if two events of different order different am-  ayponent of the kinetic energy definitely deviates from the
plitude) display different scalings, every other amplitude 53 |ay, despite the numerical uncertainty due to the oscilla-
event will scale in a way which can be determined self-jong introduced by the discrete shell dynamics. Further
similarly. In order to specifically verify the above self- gyqy of the derivative of the local scaling exponent with
similarity structure of the hierarchiiI,|®®, we plot in Fig. respect to the orderdg,/dp and d?¢,/dp?) gives more

17 log |11,/ ®** 4 as a function of logy|IT,|®/|TL,|Y for  getailed information about the functional form of the expo-
different levelsp=1, .. ., 15 adlifferent inertial range shells nents¢ ), which allows one to test various theoretical models
n=6,...,9. Theparallel lines observed provide the evi- of the energy cascade. It is fair to conclude that the hierar-
dence that the symmetry relation proposed above is acCi¢hical structure model recently proposed by(8ke-Leveque

rately satisfied by the hierarchy of the fluctuation levelsmode) gives the closest description of the cascade dynamics
|I1,|®P). Futhermore, the constarks, are independent gf;  and structures.

similar results have been obtained by Ruiz-Chavaetial.
[21] from laboratory turbulence data. The relation which re-
lates the different fluctuation levels of the hierarchy is there-
fore not only independent of the shell indexout also inde- This work was supported by the Office of Naval Research
pendent of the ordep of the levels concerned. Note finally under Contract No. N0O0014-9510444. Z.S.S. gratefully ac-
that the slope of the parallel lines in Fig. 17 provides a newknowledges support from the Alfred P. Sloan Foundation.

measurement of the paramei@r fully consistent with the
previous estimation, i.e=0.58.
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