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Cascade structures and scaling exponents in a dynamical model of turbulence:
Measurements and comparison
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A detailed examination of the cascade statistics and scaling exponents is carried out for a dynamical-system
model of fully developed turbulence called the GOY shell model. The convergence in time of the probability
density functions and moments of the velocity fluctuations and their scaling exponents is studied with particu-
lar care. With a large sample size (53109), we demonstrate that there exists a finite cutoff for the velocity
fluctuations at each inertial-range wave-number shell and the properties of the cutoff determine the scaling
exponents of all moments. This cutoff represents the most intermittent structures in the cascade dynamics and
exhibits a power-law dependence on wave number. The accurately determined scaling exponents permit a
detailed comparison with various phenomenological models describing the statistics of the energy cascade. The
consideration of the first and second derivatives of the scaling exponents with respect to the order of the
momentsp provides the evidence that the hierarchical-structure model@She and Leveque, Phys. Rev. Lett.72,
336 ~1994!# predicts the best functional dependence onp of the scaling exponents in the GOY shell model.
@S1063-651X~97!06403-9#
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I. INTRODUCTION

Turbulence is generally described as a dynamical stat
a system exhibiting chaotic fluctuations over a wide range
spatial and temporal scales. A customary example is the
tion of a fluid at high speed or low viscosity. Of particul
theoretical interest is fully developed turbulence at a stat
cally stationary state where turbulent fluctuations are s
tained at all scales, with different mechanisms at differ
scales. For an ordinary three-dimensional turbulent flo
large-scale fluctuations (l ;l 0) are usually maintained by
an external forcing, or a flow instability, while small-sca
fluctuations (l !l 0) are sustained by a so-called casca
dynamics which results from the nonlinear interactions~also
called the inertial force! between larger eddies. At small vis
cosity, the cascade dynamics dominate over the visc
damping over a wide range of scales until a characteri
dissipation scale is finally reached (l ;h). For l ,h, fluc-
tuations are then damped out by viscous dissipation, and
flow becomes smooth. When the characteristic forcing
dissipation scales are clearly separated, i.e.,l 0@h, turbu-
lence then reaches a state of fully developed dynamics
concise and constructive theoretical understanding of this
namical state has been stirring up a continuous effort for
last half century.

It is widely accepted that the motion of an ordinary i
compressible fluid is accurately described by the Nav
Stokes equations for a wide range of viscosity, or Reyno
number. The Navier-Stokes equations have so been rega
as the first principle for describing turbulence; the turbul
state is identified as the very chaotic solution of the equat
At the present time, rigorous nonlinear analysis of the eq
tion has yielded few constructive results@1,2#. The nature of
551063-651X/97/55~3!/2789~11!/$10.00
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the difficulty seems to lie in a poor knowledge about t
functional space in which a typical turbulent solutio
evolves. Anya priori estimate without taking into accoun
such knowledge does not seem to yield any optimal cha
terization of the properties of turbulence. Physicists rat
investigate these properties from a phenomenological sta
point, that is, starting from hypotheses motivated by exp
mental and numerical observations. Interestingly, this is a
the approach adopted by the mathematician Kolmogorov,
cording to Yaglom. This line of study has yielded very fru
ful results during the past half century and continues to
pand nowadays.

While recognizing that eventually the Navier-Stokes tu
bulence needs to be fully understood, it is worthwhile
examine carefully various other systems exhibiting the
sential features of fully developed turbulent dynamics. Th
features include, from the present phenomenological un
standing, the existence of an inertial range of scales wh
cascade dynamics are fully developed. As one moves a
from a deductive approach based on the first principle, s
studies are particularly important. Indeed, studies on vari
turbulent systems allow one to differentiate the Navi
Stokes~NS! system from others and identify the role of th
essential ingredients in the NS system: e.g., the conserva
laws, the degree of the nonlinearity, etc. More importantly
may stimulate the development of a general theoret
framework for nonequilibrium systems presenting critic
and scale invariance properties. This has been the esse
motivation behind the present study of a dynamical-syst
model of turbulence, namely the GOY shell model.

The GOY shell model is a finite-dimensional dynamic
system, first introduced by Gledzer@3# and based on earlie
attempts to quantitatively characterize the cascade dyna
2789 © 1997 The American Physical Society
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2790 55EMMANUEL LEVEQUE AND ZHEN-SU SHE
@4,5#. Later, an important extension was made by Ohkit
and Yamada@6# by introducing phase dynamics with com
plex variables. The dynamics are governed by the follow
set of ordinary differential equations:

S ddt1nkn
2~kn /kd!

aDun5 f n1~anun11* un12* 1bnun11* un21*

1cnun21* un22* !.

Here, $un%0,1, . . . ,N21 is a set of complex variables whic
model the Fourier space excitations in shells of wave nu
berskn5k0l

n<k,kn11, f n is a driving force usually acting
on some low-wave-number shells, e.g.,f n5 f 2dn,21 f 3dn,3 .
The termnkn

2(kn /kd)
aun is a hyperviscosity damping cha

acterized by an exponenta, the kinematic viscosityn, and
the characteristic dissipation wave numberkd determined by
the amplitude ofn. At very smalln, the dynamics are essen
tially inviscid for k!kd ; the nonlinear couplings make
chain linking the low- and high-wave-number shell fluctu
tions.

The coefficients of the nonlinear term follow from th

requirement that the total kinetic energyE5 1
2 (uunu2 and

the phase volume of this system must be conserved by
inviscid dynamics:

an5 ikn , bn52 i ekn21 , cn52 i ~12e!kn22 .

Here, bothl ~the subsequent scale ratio! ande are free pa-
rameters. The nonlinear dynamics also conserves a se
dynamical quantity H5(En /(e21)n @7#. For
l51/(12e), H5(En /(e21)n5((2l)nEn and can be
identified with the helicity (Hn is an unsigned quantity an
uHnu;knEn). In the present study (l,e) 5 (2,12 ), which lies
on the energy-helicity conservation curve.

The GOY shell model has received much interest in
last few years. Existing results report that after a transit
regime, the system displays very rich chaotic dynam
which defines a specific attractor@6,8#. The stationary~in-
variant! measure on this attractor is not known rigorous
however, many of its properties can be studied numerica
A particular component of this measure, which is of fund
mental physical interest, is the~smooth! probability density
functions of single-shell variablesuunu. At small viscosity,
the system exhibits an inertial range of shellsk0!kn!kd ,
where such PDF’s fully determine the scaling properties
uunu through a power-law dependence of the statistical m
ments ^uunup& on the wave numberkn , characterized by
some scaling exponentszp :

^uunup&;kn
2zp .

It is found that thezp’s increasingly deviate from Kolmo
gorov’s mean field theoryzp5p/3 @9# asp increases, which
can be interpreted in terms of some multifractal scaling pr
erties of the fluctuations of the velocity amplitudeuunu
@10,7#. The deviation from Kolmogorov’s scalings depen
upon the structure of the nonlinear term, i.e., on the part
lar setting (l,e) @11#. However, once (l,e) is fixed such that
the energy and the ‘‘helicity’’ are conserved, the scaling e
ponents are found independent of the parametersl ande @7#.
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This result suggests that the conservation properties of
nonlinear dynamics play an essential role in determining
inertial-range scalings.

II. MAIN RESULTS

In the present work, we report more careful quantitat
studies of the inertial-range statistics. Such a study is ne
sary in view of testing various theoretical models of t
inertial-range describing the energy cascade. Two main p
lems have affected the quantitative significance of the pre
ous studies. The first problem is related to oscillations of
moments^uunup& across the wave-number shellkn . These
oscillations seem to be due to the discrete nature of
model. This issue has been discussed by Kadanoffet al. @7#,
who then focus on the quantity

Pn5~un21unun11!
1/3.

The study of the scaling properties of the mome
^uPnup& shows that the effect of a major oscillation of perio
three is reduced and the same scaling laws as^uunup& are
observed. In fact, these oscillations have a more complica
structure originating from the rapid falloff of the excitation
at the ultraviolet dissipation cutoffkd . A more accurate de-
termination of the scalings is adopted here and consist
studying the relative scalings:̂ uPnup&;^uPnu3&zp /z3, a
method first used by Benziet al. @12# in measuring scaling
exponents in laboratory flows.

The second issue concerns the sample-size effect on
statistical averages. The convergence has never been st
before, although high-order moments have been freque
reported. Note that there exists the same issue for meas
ments of the scaling exponents in both laboratory exp
ments and numerical simulations. By working with a lar
sample size~up to 5 billion!, we are able to examine th
issue of convergence for moments up to order 20. This
lows us to meaningfully discuss the scaling exponentszp of
pth-order moments for largep and its derivatives which, as
shown later, provides a crucial test for various theoreti
models. The calculation of moments are performed by fi
constructing the probability density functions~PDF’s!, fol-
lowed by an integration in the variable of the fluctuatin
quantities~e.g., log10uPnu). The exponents are then obtaine
by an estimation of the local derivative
zp /z352dlog^uPnup&/dlog^uPnu3&. Several schemas are use
for such an estimation in order to ensure the robustnes
the result. This detailed examination points out the source
uncertainties, leads to some convergence curves, which
lows one to extract the values of the exponents, and fin
gives an idea about the confidence levels of the results.

With an accurate determination of the scaling expon
zp , we are able to study its functional dependence onp. In
particular, with the study ofdzp /dp andd2zp /dp

2, we are
able to evaluate various scaling models of turbulence p
posed in the past three decades: the log-normal model@13#,
the randomb model@14#, p model@15#, the log-stable mode
@16#, and the hierarchical-structure model@17#. This fine
comparison shows that the hierarchical-structure model
dicts a functional form forzp remarkably close to the mea
sured one. Other models, with optimally chosen paramet
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55 2791CASCADE STRUCTURES AND SCALING EXPONENTS IN . . .
produce close values forzp at low order, but display an
inconsistent tendency fordzp /dp and d2zp /dp

2 as p in-
creases.

With a large sample size, up to 5 billion, we demonstr
the existence of a finite cutoff for the velocity fluctuations
each wave-number shell. In other words, the attractor ha
compact support. The highest fluctuation events in
inertial-range shells, which will be referred to as the m
intermittent structures in the cascade dynamics, show
power-law dependence on the wave numberkn :
uPnumax;kn

2l` . The power-law exponentl` is significantly
smaller than the exponentsl0 of typical fluctuation events
^uPnu&;kn

2l0 , a direct evidence of multiple scaling natu
of the cascade dynamics. The existence of the most inter
tent structures provides then a solid basis for
hierarchical-structure model of the inertial-range scalin
@17#.

The reminder of the paper is organized as follows. In S
III, we present relevant computational details of the nume
cal study of the GOY shell model. In Sec. IV, we descri
numerical results on the probability density functions of t
inertial-range fluctuating quantities, and the converge
study of the moments, specially at high orders. Section V
devoted to the study of the scaling exponents, with a de
assessment of uncertainties and source of errors. In Sec
the measured scaling exponents are compared to va
models of the inertial-range energy cascade. This comp
son is made more convincing by carrying out a consist
estimate of the first and second derivatives of the sca
exponentsz8(p) andz9(p). Finally, Sec. VII is devoted to a
discussion of the physical significance of the hierarchic
structure model which, as shown by the results of the ab
study, stands as the closest phenomenological descriptio
the energy cascade in the GOY shell model.

III. NUMERICAL INTEGRATIONS

The parameters in the numerical integration of the GO
shell model are chosen as follows: The reference wave n
ber k05223. Several forcing schemas have been used
investigate the possible dependence of the inertial-range
tistics on the forcing mechanism. These schemas include~1!
a time-independent forcing acting on a single wave-num
shell (n53); ~2! a dt-correlated white noise forcing actin
on a single wave-number shell (n53); ~3! a dt-correlated
white-noise forcing acting on two adjacent wave-numb
shells (n52,3); ~4! a random force with a fixed correlatio
time dt52.531024 and an amplitudeu f nu50.005A2 acting
on the shellsn52,3. The dynamics of the system are the
fore deterministic in case~1! and stochastic in the othe
cases. However, in all cases, the PDF’s at the inertial-ra
scales display the same qualitative and quantitative featu
although some discrepancy was expected due to the dis
nature of the shell model. The results presented below h
been obtained using the forcing mechanism~4!, described
above.

We have also investigated the dependence of the ine
range statistics on the value of the viscosity. We did
notice any visible change provided that the viscous cu
kd remains located at the same relative position with resp
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to the discrete shell grids. We have observed oscillations
the global quantities such as the mean dissipation rate
function of the viscosity which we believe is due to a pe
odic change of the relative location ofkd as the viscosity
decreases. This phenomenon suggests the importance o
dynamics at the viscous cutoff on the whole inertial ran
consistent with the results in the hyperviscosity ca
(a.0) @18#. Although we have studied various cases w
N517, 22, 27, and 35, the results presented below will fo
on the caseN522 andn51027. We will refer it to as the
standard parameter case.

The system has been integrated forward in time us
either a second-order slave-frog Adams-Bashforth sche
@10# or a fourth-order Runge-Kutta scheme. The PDF’s o
tained using these two different schemas agree accuratel
our present numerical investigation, we have actually cho
the slave-frog Adams-Bashforth scheme, which is more
propriate to resolve the dissipative dynamics. For the st
dard parameters above, we have setdt52.531024. The ini-
tial condition is random and arbitrary. The system first r
for approximately 1000–5000 forcing shell turnover times
order to ensure that the system has evolved close to its
tractor. Due to the complicated structure of the attrac
there is no absolute criterion to certify that the stationa
regime has truly been reached after a finite integration tim
We must rely on the convergence of the statistical mome
to validate our description of the chaotic attractor.

After the transitory regime, the system reaches a dyna
cal state in which the characteristic dissipation and forc
shells are clearly separated, leaving an inertial range of sh
where an energy cascade towards high-wave-number s
operates at a constant mean rate. For the standard para
case, the inertial range spreads up to the shell in
n514215, which corresponds to about 10 octaves or 3
cades. The study of the statistical properties of the fluct
tions of the velocity amplitudeuunu in this inertial range is
the main subject of the present work.

IV. PDF’s AND MOMENTS

The histograms of log10uPnu have been constructed from
statistical samples collected at each time step along the
evolution ofPn(t). The discretization size of the histogram
has been fixed atD log10uPnu50.02 for alln, which realizes
a compromise between the requirement to suitably appr
mate a continuous PDF and to get sufficient regula
~smoothness! in this approximation. With a logarithmic co
ordinate, one is able to capture the whole structure of
fluctuations ofPn for both low and high amplitudes. We
have independently verified the ergodic property of the GO
shell model by confronting time statistics with mixe
ensemble-time statistics. We then found that the ergodi
was remarkably verified. This ensures that the renormali
histograms converge to the PDF’sP(log10uPnu), as the num-
ber of time samples~proportional to the integration time!
increases to infinity.

In Fig. 1, we show the PDF’s of log10uPnu for two inertial
range shellsn57 andn59 obtained with various sampl
size. As seen from Fig. 1,P(log10uPnu) shows a noticeable
asymmetry for the left and right tails with a slower decay
the negative values, i.e., foruPnu close to zero. This asym
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2792 55EMMANUEL LEVEQUE AND ZHEN-SU SHE
metry allows us to discover an important property: there
ists a maximum for the fluctuation events ofPn . Indeed, the
right tail displays a sharp cutoff at a probability density lev
much higher~two orders of magnitude at least! than the den-
sity level of the cutoff at the left tail which is likely set b
undersampling effects. Forn57, this maximum value has
fully converged for the sample sizes above 1 billon. T
convergence appears more slowly forn59; this is natural
since stronger and rarer fluctuation events are expecte
higher wave-number shells. Note also that the left tail see
to be noisier than the right tail, indicating that the hig
amplitude events ofPn are more coherent, compared to low
amplitude events.

Despite the huge amount of samples collected, the r
tail at high-wave-number shells still exhibits fluctuatio
near the maximum cutoff. This is a consequence of the
creasing intermittency at small scales. In Fig. 2, we sho
magnification of the large amplitude tail ofP(log10uPnu) for
two different sample sizes. In Fig. 2, we also indicate
position of the amplitudes where the integrand in the integ
of the pth order moment has its peak. When the peak po
tion is close to the ‘‘false’’ cutoff, e.g., one obtained for a
billon sample size in Fig. 2, we then expect that the eval
tion of the high-order moments to be inaccurate. Later res
will show that this estimate is roughly correct. On the oth
hand, if the cutoff is definite, the moment calculation to a
arbitrary order should be accurate. Even if the cutoff is
accurately determined, its existence implies a much fa
convergence of the high-order moments. Results below
further justify this statement.

In order to obtain a better estimate of the moments,
work with smoothed PDF’s. The smoothing does not ma
any difference for a big sample size (.109), but makes the
convergence faster when the sample size is moderate.
result is suggestive for the treatment of laboratory data wh
is usually not very large. The smoothing is based on
assumption that the resolutionD log10uPnu is small enough
so

FIG. 1. P(log10uPnu), n57,9 for increasing sample size. Dotte
line, 109; long-dashed line, 23109; solid line, 53109. Note the
convergence of the sharp cutoff at the right tail.
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that the second derivative of the PDF’s can be considered
to change dramatically between nearby bins of lnuPnu. The
technique then smoothes out bumpy fluctuations of
PDF’s due to statistical sampling errors. Specifically, we
sume that five consecutive points would lie nearly on
second-order parabola whose parameters are then given
least-squares calculation, which yields

ỹ05y02
3

35
~y2224y2116y024y11y2!.

The moments are obtained by using the Simpson’s rule
the integration schema over the smoothed PDF’s. This w
we increase the accuracy of our quadrature formula in
numerical integration of the moments, especially for hig
order moments.

Figure 3 shows the relative fluctuation of the moments
a function of the sample size, which is a direct measure

FIG. 2. The magnified tail ofP(log10uPnu) for n59.

FIG. 3. Convergence of̂uP7up&, p55,10,15.
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the convergence. The fluctuations of the moments here
relative to the asymptotic value obtained with a 53109

sample size. This representation enables a synthetic vie
the convergence of the moments at different orders.
second-order moments have practically fully converged
sample sizes above 109. At the sample size 43109, all mo-
ments up to the order 15 are within a 1% margin. Keep
these results in mind will be useful in judging the source
the uncertainty in the determination of the scaling expone

For practical purposes, it is important to formulate t
convergence results in terms of the length of the time sig
in a dynamical time unity, which is more related to the nu
ber of independent samples. The natural dynamical t
scale at a particular wave-number shell corresponds to
local turnover time or correlation time, which can be es
mated from the two-point time correlation functions. In F
4, we present the two-point correlation functio
^Fn(t)Fn(t1t)& of the energy flux at different inertial-rang
shells. For smallt, ^Fn(t)Fn(t1t)&5^Fn

2(t)&(12t2/tn
2).

We then definetn as the time unit which plays a similar rol
as the Taylor microscale in Navier-Stokes turbulence. Fig
5 shows the variation oftn as the wave numberkn . In the
log-log plot, it shows that the variation over the inertia
range wave-number shells exhibits closely a power-law
havior.

Using tn as a measure of the time unity, we have exa
ined the convergence of the moments at various wa
number shells. A typical result is shown in Fig. 6, where t
relative convergence of the 10th-order moment is examin
It can be seen that the present time signal used in orde
construct these statistics is very long in terms of the dyna
cal correlation time unity; of the order of 106 to 108. It ap-
pears that the moments at high-wave-number shells conv
more slowly, even though they have a bigger effect
sample size due to a smaller dynamical turnover time. T
can be explained by the fact that dynamics are more in
mittent at higher-wave-number shells; high amplitude eve
are captured in a more irregular and disordered way.
high amplitude tail is then more bumpy and requires a

FIG. 4. Two-point time correlation functions of the energy flux
re
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more statistical events to converge to its asymptotic sha
This naturally slows down the convergence of high-ord
moments at high wave numbers.

V. SCALING EXPONENTS

The above results establish that the moments only flu
ate within 1% up to the order of 15~and just a few percen
up to the order of 20! for a sample size from 13109 to
53109. If the moments behave exactly in power law wi
the wave numberkn , the exponents can then be derived fro
the local derivative:

zp52
dlog^uPnup&
dlogkn

.

The existence of a scaling range is then manifested by
constancy of the local derivative over a finite range of wa
numbers. Our estimation of the scaling exponents below
be based on the evaluation of the local derivative and on
constancy property.

FIG. 5. Correlation time as a dynamical time unity, as functi
of log2kn /k05n.

FIG. 6. Convergence of̂uPnu10&, n56,8,10 in dynamical cor-
relation time unit.
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2794 55EMMANUEL LEVEQUE AND ZHEN-SU SHE
In the shell model, however, we have a discrete se
kn so that the derivative cannot be accurately evaluated b
low order finite difference approximation. More serious
log10^uPnup& exhibits oscillatory behavior with respect to th
shell indexn, even when the product of three adjacent she
(Pn) is considered. Such an oscillation jeopardizes con
erably the locale derivative calculation. In order to make
reasonable estimate, we choose to consider the so-c
relative scaling exponents, that is,

zp /z35
dlog^uPnup&
dlog^uPnu3&

.

The relative scaling exponents are much less sensitiv
‘‘global’’ oscillations through wave-number shells, and giv
a better characterization of the change of shape of the PD
with n. Measuring the relative scaling exponents was fi
suggested by Benziet al. @12# who refer it to as an extende
self-similarity ~ESS! property of the statistical moments. In
deed, they showed that, when plotting log10^udv l up& against
log10^udv l u3& for the experimental data of the velocity stru
ture functions, a more extended range of the inertial-ra
scaling is observed. This property can be interpreted as
lows: As the viscous range is approached, a variation
some global parameters in the PDF’s is introduced, wh
does not affect the characteristic deformation of the PD
due to the nonlinear cascade dynamics, so that a lon
power-law range is obtained for the relative moments. In
shell model, the oscillations due to the discreteness are
related to the variation in shells of some global parameter
the PDF’s, relatively distinct from the deformation due to t
nonlinear cascade dynamics, so that we expect to see b
relative scaling behavior. Note that becausez3[1 theoreti-
cally, the relative scaling exponents defined above in
inertial range are equal to the absolute scaling exponent

In Fig. 7, we display the relative dependence of^uPnup&
on ^uPnu3& for p52,10 over wave-number shells. In the lo
log plot, a clear scaling range is displayed. The lines have
slope which we obtained from a ‘‘mean’’ estimate of th
local derivatives, as we explain now. We have used sev

FIG. 7. Relative dependence of the moments showing clear r
tive scalings.
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different approximations for evaluating the local derivative
in order to ensure the robustness of the results. The best
methods are a least-squares fit by a straight line using
adjacent points and a fourth-order difference schema u
five adjacent points. The results are shown in Fig. 8~a! and
Fig. 8~b!. We may see the existence of a range~from the
wave-number shells 5–14! where the local derivatives ar
roughly constant, although ocsillations are still persiste
Remarkably, the local derivatives oscillate around valu
clearly distinct from the Kolmogorov scalings@9# for both
p52 and p510. The two approximation schemas sho
qualitatively the same and quantitatively close behavior
the local derivative. We then regard these local derivative
the local scaling exponents.

At this point, it is important to check the convergence
the local scaling exponent estimate as a function of
sample size, since errors of several percents occur for
ments of order larger than 10. In Fig. 9, we display the ra
of the local scaling exponents estimate at several sam
sizes to the final derivative values obtained at the sample
of 53109. The result shows that from 3 to 5 billion samp
sizes, the local scaling exponents differ by only 0.5%, mu
smaller than the scattering due to the oscillations acr

a-

FIG. 8. ~a! Local derivative estimated for the second-order m
ments.~b! Local derivative estimated for the tenth-order momen
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wave-number shells. It is also interesting to note that
convergence is faster for the local scaling exponents than
the moments which, according to Fig. 3, differ by 1% a
billion sample size. This can be interpreted by the fact t
adjacent wave-number shells have some common deficie
in the estimation of the moments which, when the local
rivative is evaluated, partially cancel as a systematic er
yielding a more accurate estimate of the scaling expone
We believe that this is the reason why even with very ins
ficient sample size, experimental data still give a relia
indication of the anomalous scalings in turbulence.

A more quantitative estimate of the convergence rate
zp is shown in Fig. 10. For a dynamical turnover time
53106 and 23107, z5 does not show any fluctuations,z10
shows some 0.5% andz15 some 1.5% fluctuations. This con
vergence curve in terms of the dynamical turnover time
useful in accessing the possible convergence of experime
measurements. In a typical experimental data collection,

FIG. 9. Convergence check of the local derivative estimate

FIG. 10. Convergence ofzp in dynamical correlation time unit.
e
or

t
cy
-
r,
ts.
-
e

f

s
tal
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hard to go above 106 dynamical turnover time. Therefore, th
result presented here represents the best estimate to att

The scaling exponentszp obtained from the average ove
the wave-number shells from 5 to 14 is plotted in Fig. 1
The present study allows one to a clear identification of t
kinds of errors:~1! errors due to discrete dynamics, and~2!
errors due to insufficient statistics. The second kind of er
is made very small due to the large sample size, while
first kind intrinsic to the model remains the principle sour
of uncertainty. The final error is obtained by estimating t
scattering due to the oscillations in Fig. 8. Since oscillatio
are primarily caused by the discreteness of the mode
seems impossible to improve our estimates even with m
statistical samples. Clearly, the error estimate is conse
tive. Note that with more realistic dynamics free of discre
oscillations such as in the 3D Navier-Stokes turbulen
simulations or in laboratory measurements with adequ
resolutions, the exponents should be determined with hig
accuracy.

Nevertheless, anomalous scaling exponents are cle
evidenced beyond any doubt. In Fig. 11, we present the
ponentszp with the error estimate from the oscillations. Th
line in Fig. 11 is a fit of the hierarchical-structure mod
which has been recently proposed by us. In Table I, we
port also the numerical values of the exponents. The m
values of the shell-model scalings are all within 0.5% clo
to the values of the theoretical model. The agreement
tween the theoreticalzp and the numerically measuredzp is
truly remarkable. Note that the parameters in t
hierarchical-structure model can be directly obtained fr
the zp measured; the fitting is then straightforward~see the
next section!. The success of the hierarchical-structure mo
is more apparent by a detailed comparison with other p
posed energy cascade models in the next section. Su
remarkable agreement should not be accidental. We will
cuss its physical significance in Sec. VII.

VI. COMPARISON TO THEORETICAL MODELS

The purpose of performing such a detailed study of
scaling exponents is to test various models of the ene
cascade of fully developed turbulence. As discussed in
Introduction, all phenomenological models of the ener

FIG. 11. The ‘‘mean’’ estimate of the anomalous scaling exp
nents.
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2796 55EMMANUEL LEVEQUE AND ZHEN-SU SHE
cascade make no direct link to the Navier-Stokes equati
therefore, they should also apply to the GOY shell mod
Despite the discreteness, the shell model presents remar
cascade dynamics, and exhibits anomalous scaling l
which merit a quantitative theoretical description predicti
a correct form ofzp . In this section, we make a detaile
comparison with some existing models.

The models confronted in this comparison include~1! the
log-normal model@13# zp5p/31(m/18)(3p2p2); ~2! the
random-b model@14#: zp5p/32 log2(12x1x2p/321); ~3! the
p model @15#: zp5p/32m(p/3)a2(p/3)/(2a22); ~4! the
log-stable model:zp5p/3112 log2@l

p/31(22l)p/3# @16#;
~5! the She-Leveque model:zp5gp1(123g)(12bp/3)/
~12b! @17#. In Fig. 12, we comparezp with all the models
above with parameters chosen in such a way as to minim
deviation to the numericalzp at smallp ~for the log-stable
model, we use the parameter values suggested by Kida@16#!.
We also plot the exponents of the present numerical com
tation with increasing sample size to give an idea about
numerical convergence of the scaling exponents. It can
seen that thep model and She-Leveque model give a sa
factory description over most of the range ofp. Although the
other three models give the exponents values close to
numerical ones over some range ofp, a sharp glance at th
figure indicates some inconsistency for largep. In order to
allow a more accurate differentiation among the models,
propose to studydzp /dp andd

2zp /dp
2, which gives a much

better characterization of the variation ofzp on p.
The evaluation of the numericaldzp /dp and d2zp /dp

2

have to rely again on some finite difference approximati
From the PDF’s, we can compute moments of all ord

TABLE I. Comparison of the scaling exponentszp measured in
numerical simulations of the GOY shell model with th
hierarchical-structure model@17# in which the parameters are sui
ably chosen.

Orderp zp /z3 ~shell model!
SL model:

0.125p11.49(120.58p/3)

1 0.37560.005 0.372
2 0.70560.003 0.703
3 1.000 1.000
4 1.26860.006 1.268
5 1.51260.014 1.513
6 1.73860.026 1.737
7 1.94660.040 1.946
8 2.14160.058 2.140
9 2.32360.078 2.323
10 2.5060.10 2.50
11 2.6660.13 2.66
12 2.8260.15 2.82
13 2.9760.18 2.97
14 3.1260.21 3.12
15 3.2660.25 3.27
16 3.4060.28 3.41
17 3.5460.32 3.55
18 3.6760.36 3.68
19 3.8060.40 3.82
20 3.9460.44 3.95
s;
l.
ble
s

ze

u-
e
e
-

he

e

.
s

including moments of fractional orders. The question th
may arise is that since each exponent is obtained wit
certain level of accuracy~i.e., finite number of significant
figures!, does it make sense to perform a finite differen
calculation? We believe that it is possible provided tha
local exponent estimated at some fixed point is consiste
used in the evaluation. The argument is that for an infinite
mal change of the orderp, most errors are common to dif
ferent orders so that they finally cancel. The relative error
the derivative is of the same order as the exponent itself.
have decided to studydzp /dp andd

2zp /dp
2 from the local

exponentzp obtained at a fixed wave-number shell (n57)
and indeed we obtained a smooth curve for the both der
tives. The first derivative is obtained with a fourth-order i
terpolation formula:

f 8~x0!'
22 f ~x22!2 f ~x21!1 f ~x1!12 f ~x2!

10h
,

whereh is the equidistant interval betweenxn andxn11, and
the second derivative with the following interpolation fo
mula:

f 9~x0!'
1

100h2
$9 f ~x23!16 f ~x22!25 f ~x21!220f ~x0!

25 f ~x1!16 f ~x2!19 f ~x3!%,

The results are presented in Fig. 13 and Fig. 14, at sev
sample sizes. It is no surprise that the convergence is slo
for derivatives, but the tendency of the curve is quite cle

It is quite remarkable that log10ud2zp /dp2u derived from
the numerical computation data tends to a straight line as
sample size increases, as predicted by the hierarch
structure model. No other model predicts this tendency. I
interesting to note that from Fig. 14, we can derive the val
of the two parameters in the hierarchical-structure modeb
and g, which are related to the slope of the line and
intercept with the vertical axis. This property makes the d
termination of the parameters very straightforward.
shown by Dubrulle@19# and She and Waymire@20#, the ex-

FIG. 12. Scaling exponentszp compared to various models.
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55 2797CASCADE STRUCTURES AND SCALING EXPONENTS IN . . .
istence of a hierarchy of structures can be exactly realized
a random multiplicative process with log-Poisson statist
The present numerical evidence then suggests the
Poisson process as the closest description of the cascad
namics of the GOY shell model. While a mathematical pro
is still lacking, the physical significance of this result
worth being explored. We address this issue in the next
tion.

VII. DISCUSSIONS: THE HIERARCHICAL STRUCTURES
OF THE ENERGY CASCADE

The basic phenomenology in the hierarchical-struct
model @17# is that the cascade events do not fluctuate up
any arbitrary amplitude, but up to some maximum value.
other words, the trajectories of the asymptotic long-time
namics of the system evolves in a bounded domain in
phase space, and therefore the PDF of the fluctuations~e.g.,
Pn) at each wave-number shell has a compact support.
upper bound in the velocity fluctuations at each wa

FIG. 13. First derivative of scaling exponentsdzp /dp compared
to various models.

FIG. 14. Second derivative of scaling exponentsd2zp /dp
2 com-

pared to various models.
y
.
g-
dy-
f

c-

e
o
n
-
e

he
-

number shell represents the largest, or the most intermitt
fluctuation event. Intuitively, these structures should pla
role in controlling the dynamics. We are then motivated
look for direct evidence of the existence of such most int
mittent structures. In Fig. 15, we display the relative var
tion of log10uPnumax for a series of shells in the inertial rang
(n56,8,10). Clearly, the maximum amplitude events f
n56,8 have converged in each shell after 2 billion samp
have been collected, whereas forn510 some increase occur
between 4 and 5 billon samples. A slower convergence of
amplitude of the maximum events at larger wave-num
shells is consistent with an intermittent cascade.

One remarkable property of the most intermittent casc
event is its dependence on the wave number. In Fig. 16,
show the relative dependence of the maximum fluctuat
event on the third-order moments, from which we derive
approximate scaling exponent20.16. In the hierarchical-
structure model@17#, this exponent corresponds to the p
rameter l` . Here, it is smaller than the paramet
l`520.125 used in the fitting of the scaling exponen

FIG. 15. Convergence of log10(uPnu)max for n56,8,10.

FIG. 16. Scaling behavior of log10(uPnu)max.
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2798 55EMMANUEL LEVEQUE AND ZHEN-SU SHE
~Figs. 11–14!; this may be due to the fact that the maximu
values at higher wave number shells have not fully c
verged. Indeed, an increase in their values would make
line flatter in Fig. 16.

The fact that the maximum fluctuation event displays
scaling different from that for the typical fluctuation even
(^ log10uPnu&;kn

20.37) shows that the cascade dynamics
the shell model have multiscaling properties. The ques
we had raised previously, and which actually leads to
proposal of the hierarchical-structure model, is whether th
is any relation between the exponents of the most inte
events and the typical intensity events. The key idea in
hierarchical-structure model is that both events, and in
all events in between, should be related because of the
namical constraint expressed through the equation of mot
In addition, a certain kind of similarity law should under
such a relation. This motivates the proposal that

Pn
~p11!5ApPn

~p!b1/3Pn
~`!12b1/3,

where Pn
(p)5^uPnup11&/^uPnup& stands for thepth order

fluctuation events andAp is a constant independent of th
shell indexn.

For the PDF’s we consider here,uPnu(p) monotonically
increases withp and therefore represents a hierarchy of a
plitude levels of the velocity fluctuations. The above relati
means that if two events of different order~or different am-
plitude! display different scalings, every other amplitud
event will scale in a way which can be determined se
similarly. In order to specifically verify the above sel
similarity structure of the hierarchyuPnu(p), we plot in Fig.
17 log10uPnu(p11) as a function of log10uPnu(p)/uPnu(1) for
different levelsp51, . . . ,15 atdifferent inertial range shells
n56, . . . ,9. Theparallel lines observed provide the ev
dence that the symmetry relation proposed above is a
rately satisfied by the hierarchy of the fluctuation lev
uPnu(p). Futhermore, the constantsAp are independent ofp;
similar results have been obtained by Ruiz-Chavarriaet al.
@21# from laboratory turbulence data. The relation which
lates the different fluctuation levels of the hierarchy is the
fore not only independent of the shell indexn but also inde-
pendent of the orderp of the levels concerned. Note finall
that the slope of the parallel lines in Fig. 17 provides a n
a

R

-
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a

n
e
re
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e
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y-
n.
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-
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-
-

measurement of the parameterb, fully consistent with the
previous estimation, i.e.,b50.58.

In summary, the numerical results presented in this pa
unambiguously demonstrate the existence of anoma
~non-Kolmogorov! scaling exponents characterizing the ca
cade dynamics of the shell model; in particular, the scal
exponent of the kinetic energy definitely deviates from t
2/3 law, despite the numerical uncertainty due to the osci
tions introduced by the discrete shell dynamics. Furt
study of the derivative of the local scaling exponent w
respect to the order (dzp /dp and d2zp /dp

2) gives more
detailed information about the functional form of the exp
nentszp , which allows one to test various theoretical mode
of the energy cascade. It is fair to conclude that the hie
chical structure model recently proposed by us~She-Leveque
model! gives the closest description of the cascade dynam
and structures.
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FIG. 17. Evidence of the scaling hierarchy.
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